Displaying 1361 – 1380 of 2289

Showing per page

On the Haagerup inequality and groups acting on A ˜ n -buildings

Alain Valette (1997)

Annales de l'institut Fourier

Let Γ be a group endowed with a length function L , and let E be a linear subspace of C Γ . We say that E satisfies the Haagerup inequality if there exists constants C , s > 0 such that, for any f E , the convolutor norm of f on 2 ( Γ ) is dominated by C times the 2 norm of f ( 1 + L ) s . We show that, for E = C Γ , the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on Γ . If L is a word length function on a finitely generated group Γ , we show that,...

On the Hausdorff-Young theorem for commutative hypergroups

Sina Degenfeld-Schonburg (2013)

Colloquium Mathematicae

We study the Hausdorff-Young transform for a commutative hypergroup K and its dual space K̂ by extending the domain of the Fourier transform so as to encompass all functions in L p ( K , m ) and L p ( K ̂ , π ) respectively, where 1 ≤ p ≤ 2. Our main theorem is that those extended transforms are inverse to each other. In contrast to the group case, this is not obvious, since the dual space K̂ is in general not a hypergroup itself.

Currently displaying 1361 – 1380 of 2289