A Spectral Paley-Wiener Theorem.
We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on If is a Schwartz class function we show that is supported in a ball of radius in if and only if for for all This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When we show that the two conditions for imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter...
Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define to be the union of all...
Let 𝓢(Hₙ) be the space of Schwartz functions on the Heisenberg group Hₙ. We define a spherical transform on 𝓢(Hₙ) associated to the action (by automorphisms) of U(p,q) on Hₙ, p + q = n. We determine its kernel and image and obtain an inversion formula analogous to the Godement-Plancherel formula.
We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space by functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group .
We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.
The group SU(1,d) acts naturally on the Hilbert space , where B is the unit ball of and the weighted measure . It is proved that the irreducible decomposition of the space has finitely many discrete parts and a continuous part. Each discrete part corresponds to a zero of the generalized Harish-Chandra c-function in the lower half plane. The discrete parts are studied via invariant Cauchy-Riemann operators. The representations on the discrete parts are equivalent to actions on some holomorphic...