Small time heat kernel behavior on Riemannian complexes.
A necessary and sufficient condition for a bounded operator on , M a Riemannian compact homogeneous space, to be smooth under conjugation by the regular representation is given. It is shown that, if all formal ’Fourier multipliers with variable coefficients’ are bounded, then they are also smooth. In particular, they are smooth if M is a rank-one symmetric space.
Dans la première partie on caractérise les opérateurs différentiels invariants sur un groupe de Lie compact qui possèdent diverses propriétés de résolubilité analytiques : pour cela on développe en séries de Fourier les fonctions analytiques et les hyperfonctions sur le groupe.La deuxième partie est l’étude de la résolubilité des opérateurs invariants sur un groupe complexe réductif dans l’espace des fonctions holomorphes ; on développe celles-ci en série de “Laurent” suivant un sous-groupe compact...
In the first part of this paper we study the local and global solvability and the hypoellipticity of a family of left-invariant sublaplacians on the spheres . In the second part, we introduce a larger family of left-invariant sublaplacians on and study the corresponding properties by means of a Lie group contraction to the Heisenberg group.
We survey the recent investigations on approximate amenability/contractibility and pseudo-amenability/contractibility for Banach algebras. We will discuss the core problems concerning these notions and address the significance of any solutions to them to the development of the field. A few new results are also included.
We survey some recent results on functional calculus for generators of holomorphic semigroups, which have been obtained using versions of fractional derivation of Riemann-Liouville or Weyl type. Such a calculus allows us to give tight estimates even in concrete L¹ examples.
We investigate some homological notions of Banach algebras. In particular, for a locally compact group G we characterize the most important properties of G in terms of some homological properties of certain Banach algebras related to this group. Finally, we use these results to study generalized biflatness and biprojectivity of certain products of Segal algebras on G.