Displaying 1961 – 1980 of 2289

Showing per page

The Poisson boundary of random rational affinities

Sara Brofferio (2006)

Annales de l’institut Fourier

We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all p -adic fileds.

The prevalence of permutations with infinite cycles

Randall Dougherty, Jan Mycielski (1994)

Fundamenta Mathematicae

A number of recent papers have been devoted to the study of prevalence, a generalization of the property of being of full Haar measure to topological groups which need not have a Haar measure, and the dual concept of shyness. These concepts give a notion of "largeness" which often differs from the category analogue, comeagerness, and may be closer to the intuitive notion of "almost everywhere." In this paper, we consider the group of permutations of natural numbers. Here, in the sense of category,...

The reciprocal of the beta function and G L ( n , ) Whittaker functions

Eric Stade (1994)

Annales de l'institut Fourier

In this paper we derive, using the Gauss summation theorem for hypergeometric series, a simple integral expression for the reciprocal of Euler’s beta function. This expression is similar in form to several well-known integrals for the beta function itself.We then apply our new formula to the study of G L ( n , ) Whittaker functions, which are special functions that arise in the Fourier theory for automorphic forms on the general linear group. Specifically, we deduce explicit integral representations of “fundamental”...

Currently displaying 1961 – 1980 of 2289