Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces.
The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations , () with the periodic condition , where . Our approach is based on the R-boundedness of linear operators -multipliers and UMD-spaces.
We consider systems of integral-algebraic and integro-differential equations with weakly singular kernels. Although these problem classes are not in the focus of the main stream literature, they are interesting, not only in their own right, but also because they may arise from the analysis of certain classes of differential-algebraic systems of partial differential equations. In the first part of the paper, we deal with two-dimensional integral-algebraic equations. Next, we analyze Volterra integral...
We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.
The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for , , , and to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...
We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...