Displaying 441 – 460 of 1716

Showing per page

Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space

Bahloul Rachid (2019)

Archivum Mathematicum

The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations d d t [ x ( t ) - L ( x t ) ] = A [ x ( t ) - L ( x t ) ] + G ( x t ) + 1 Γ ( α ) - t ( t - s ) α - 1 ( - s a ( s - ξ ) x ( ξ ) d ξ ) d s + f ( t ) , ( α > 0 ) with the periodic condition x ( 0 ) = x ( 2 π ) , where a L 1 ( + ) . Our approach is based on the R-boundedness of linear operators L p -multipliers and UMD-spaces.

Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations

Mikhail Bulatov, Pedro Lima, Ewa Weinmüller (2014)

Open Mathematics

We consider systems of integral-algebraic and integro-differential equations with weakly singular kernels. Although these problem classes are not in the focus of the main stream literature, they are interesting, not only in their own right, but also because they may arise from the analysis of certain classes of differential-algebraic systems of partial differential equations. In the first part of the paper, we deal with two-dimensional integral-algebraic equations. Next, we analyze Volterra integral...

Existence for nonconvex integral inclusions via fixed points

Aurelian Cernea (2003)

Archivum Mathematicum

We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.

Existence of nonnegative periodic solutions in neutral integro-differential equations with functional delay

Imene Soulahia, Abdelouaheb Ardjouni, Ahcene Djoudi (2015)

Commentationes Mathematicae Universitatis Carolinae

The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay x ' ( t ) = - t - τ ( t ) t a ( t , s ) g ( x ( s ) ) d s + d d t Q ( t , x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for τ , g , a , Q and G to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...

Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay

Abdelouaheb Ardjouni, Ahcène Djoudi (2014)

Commentationes Mathematicae Universitatis Carolinae

We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay x ' ( t ) = - a ( t ) h ( x ( t ) ) + c ( t ) x ' ( t - g ( t ) ) Q ' ( x ( t - g ( t ) ) ) + G ( t , x ( t ) , x ( t - g ( t ) ) ) , has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...

Currently displaying 441 – 460 of 1716