A Monotone Operator Method for the Solution of Fredholm Integral Equations.
We prove an existence and multiplicity result for solutions of a nonlinear Urysohn type equation (2.14) by use of the Nielsen and degree theory in an annulus in the function space.
A new characteristic property of the Mittag-Leffler function with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.
A new nonlocal discrete model of cluster coagulation and fragmentation is proposed. In the model the spatial structure of the processes is taken into account: the clusters may coalesce at a distance between their centers and may diffuse in the physical space Ω. The model is expressed in terms of an infinite system of integro-differential bilinear equations. We prove that some results known in the spatially homogeneous case can be extended to the nonlocal model. In contrast to the corresponding local...