On integral inclusions of Volterra type in Banach spaces
We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in . The famous Chandrasekhar’s integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof.
The aim of this paper is to obtain monotonic solutions of an integral equation of Urysohn-Stieltjes type in . Existence will be established with the aid of the measure of noncompactness.
In this paper, the linear problem of reactor kinetics with delayed neutrons is studied whose formulation is based on the integral transport equation. Besides the proof of existence and uniqueness of the solution, a special random process and random variables for numerical elaboration of the problem by Monte Carlo method are presented. It is proved that these variables give an unbiased estimate of the solution and that their expectations and variances are finite.