Displaying 41 – 60 of 306

Showing per page

Continuation of holomorphic solutions to convolution equations in complex domains

Ryuichi Ishimura, Jun-ichi Okada, Yasunori Okada (2000)

Annales Polonici Mathematici

For an analytic functional S on n , we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in n . We determine the directions in which every solution can be continued analytically, by using the characteristic set.

Existence and uniqueness for non-linear singular integral equations used in fluid mechanics

E. G. Ladopoulos, V. A. Zisis (1997)

Applications of Mathematics

Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further...

Exponential convergence of hp quadrature for integral operators with Gevrey kernels

Alexey Chernov, Tobias von Petersdorff, Christoph Schwab (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Galerkin discretizations of integral equations in d require the evaluation of integrals I = S ( 1 ) S ( 2 ) g ( x , y ) d y d x where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for x y and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules 𝒬 N using N function evaluations of g which achieves exponential convergence |I – 𝒬 N | ≤C exp(–rNγ) with...

Exponential convergence of hp quadrature for integral operators with Gevrey kernels

Alexey Chernov, Tobias von Petersdorff, Christoph Schwab (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Galerkin discretizations of integral equations in d require the evaluation of integrals I = S ( 1 ) S ( 2 ) g ( x , y ) d y d x where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for x y and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules 𝒬 N using N function evaluations of g which achieves exponential convergence |I – 𝒬 N | ≤C exp(–rNγ) with...

Currently displaying 41 – 60 of 306