Asymptotic stability for a class of integrodifferential equations
Let A be a closed linear operator in a Banach space E. In the study of the nth-order abstract Cauchy problem , t ∈ ℝ, one is led to considering the linear Volterra equation (AVE) , t ∈ ℝ, where and p(·) is a vector-valued polynomial of the form for some elements . We describe the spectral properties of the operator A through the existence of slowly growing solutions of the (AVE). The main tool is the notion of Carleman spectrum of a vector-valued function. Moreover, an extension of a theorem...
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations , () with the periodic condition , where . Our approach is based on the R-boundedness of linear operators -multipliers and UMD-spaces.
We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.