Continuité sur les espaces de Hölder et de Sobolev des opérateurs définis par des intégrales singulières
L'objet de ce travail est l'étude de la continuité des opérateurs d'intégrales singulières (au sens de Calderón-Zygmund) sur les espaces de Sobolev Hs. Il complète le travail fondamental de David-Journé [6], concernant le cas s = 0, et ceux de P. G. Lemarié [10] et M. Meyer [11] concernant le cas 0 < s < 1.
The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.
We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces for , (localy) Lipschitz continuous in and discontinuous in for arbitrary . Examples show that this result is optimal.
We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.