Convergence theorems for generalized projections and maximal monotone operators in Banach spaces.
In some recent papers, results of uniform additivity have been obtained for convergent sequences of measures with values in -groups. Here a survey of these results and some of their applications are presented, together with a convergence theorem involving Lebesgue decompositions.
We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence of functions from a measure space to a Banach space. In one result the equi-integrability of ’s is involved and we assume almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of to is assumed.
Given a complete and separable metric space , we study the weak convergence of sequences of measures defined on the space of all real-valued lower semicontinuous functions on as well as on the space of all closed subsets of .
Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no -points.
We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function on .
In this paper, we generalize to sub-Riemannian Carnot groups some classical results in the theory of minimal submanifolds. Our main results are for step 2 Carnot groups. In this case, we will prove the convex hull property and some “exclosure theorems” for H-minimal hypersurfaces of class C2 satisfying a Hörmander-type condition.