Topologies semi-vectorielles. Application à l'analyse complexe
On définit sur un espace vectoriel une classe de topologies qui rendent la multiplication continue, mais ne sont pas vectorielles en général. Sur un espace complexe elles permettent d’obtenir encore les principales propriétés des fonctions plurisousharmoniques. De telles topologies séparées sont localement pseudo-convexes (mais non localement convexes en général) : cette notion intervient dans les extensions données récemment par l’auteur du théorème de Banach-Steinhaus aux familles de polynômes...