Displaying 921 – 940 of 1072

Showing per page

Topologies semi-vectorielles. Application à l'analyse complexe

Pierre Lelong (1975)

Annales de l'institut Fourier

On définit sur un espace vectoriel E une classe de topologies qui rendent la multiplication continue, mais ne sont pas vectorielles en général. Sur un espace complexe E elles permettent d’obtenir encore les principales propriétés des fonctions plurisousharmoniques. De telles topologies séparées sont localement pseudo-convexes (mais non localement convexes en général) : cette notion intervient dans les extensions données récemment par l’auteur du théorème de Banach-Steinhaus aux familles de polynômes...

Totally convex algebras

Dieter Pumplün, Helmut Röhrl (1992)

Commentationes Mathematicae Universitatis Carolinae

By definition a totally convex algebra A is a totally convex space | A | equipped with an associative multiplication, i.eȧ morphism μ : | A | | A | | A | of totally convex spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product, unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum of an element and investigate them in detail. This leads to a considerable generalization of the corresponding notions and results in the theory of Banach spaces.

Towards a theory of some unbounded linear operators on p -adic Hilbert spaces and applications

Toka Diagana (2005)

Annales mathématiques Blaise Pascal

We are concerned with some unbounded linear operators on the so-called p -adic Hilbert space 𝔼 ω . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on 𝔼 ω , and the solvability of the equation A u = v where A is a linear operator on 𝔼 ω .

Towards a two-scale calculus

Augusto Visintin (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We define and characterize weak and strong two-scale convergence in Lp, C0 and other spaces via a transformation of variable, extending Nguetseng's definition. We derive several properties, including weak and strong two-scale compactness; in particular we prove two-scale versions of theorems of Ascoli-Arzelà, Chacon, Riesz, and Vitali. We then approximate two-scale derivatives, and define two-scale convergence in spaces of either weakly or strongly differentiable functions. We also derive...

Currently displaying 921 – 940 of 1072