A comparison between the closed modular ideals in l...(w) and L...(w).
Let , be ultradistributions in and let and where is a sequence in which converges to the Dirac-delta function . Then the neutrix product is defined on the space of ultradistributions as the neutrix limit of the sequence provided the limit exist in the sense that for all in . We also prove that the neutrix convolution product exist in , if and only if the neutrix product exist in and the exchange formula is then satisfied.
In this paper, we give some necessary and sufficient conditions such that each positive operator between two Banach lattices is weak almost Dunford-Pettis, and we derive some interesting results about the weak Dunford-Pettis property in Banach lattices.
Some boundedness and VMO results are proved for a function f integrable on a cube , starting from an integral bound.
We show that the Lindenstrauss basic sequence in l₁ may be used to construct a conditional quasi-greedy basis of l₁, thus answering a question of Wojtaszczyk. We further show that the sequence of coefficient functionals for this basis is not quasi-greedy.
Let X be a compact Hausdorff topological space. We show that multiplication in the algebra C(X) is open iff dim X < 1. On the other hand, the existence of non-empty open sets U,V ⊂ C(X) satisfying Int(U· V) = ∅ is equivalent to dim X > 1. The preimage of every set of the first category in C(X) under the multiplication map is of the first category in C(X) × C(X) iff dim X ≤ 1.
We construct a simplicial locally convex algebra, whose weak dual is the standard cosimplicial topological space. The construction is carried out in a purely categorical way, so that it can be used to construct (co)simplicial objects in a variety of categories --- in particular, the standard cosimplicial topological space can be produced.
We slightly modify the definition of the Kurzweil integral and prove that it still gives the same integral.
A constructive proof of the Beurling-Rudin theorem on the characterization of the closed ideals in the disk algebra A(𝔻) is given.
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
A family is constructed of cardinality equal to the continuum, whose members are totally incomparable hereditarily indecomposable Banach spaces.
We prove the existence of a contractive mapping on a weakly compact convex set in a Banach space that is fixed point free. This answers a long-standing open question.