Displaying 1861 – 1880 of 13226

Showing per page

Boundaries of weak peak points in noncommutative algebras of Lipschitz functions

Kassandra Averill, Ann Johnston, Ryan Northrup, Robert Silversmith, Aaron Luttman (2012)

Open Mathematics

It has been shown that any Banach algebra satisfying ‖f 2‖ = ‖f‖2 has a representation as an algebra of quaternion-valued continuous functions. Whereas some of the classical theory of algebras of continuous complex-valued functions extends immediately to algebras of quaternion-valued functions, similar work has not been done to analyze how the theory of algebras of complex-valued Lipschitz functions extends to algebras of quaternion-valued Lipschitz functions. Denote by Lip(X, 𝔽 ) the algebra over...

Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in ℂⁿ

Marco M. Peloso, Hercule Valencourt (2010)

Colloquium Mathematicae

We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces p , k ( ) , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.

Boundary of polyhedral spaces: an alternative proof.

Libor Vesely (2000)

Extracta Mathematicae

A Banach space X is called polyhedral if the unit ball of each one of its finite-dimensional (equivalently: two-dimensional [6]) subspaces is a polytope. Polyhedral spaces were studied by various authors; most of the structural results are due to V. Fonf. We refer the reader to the surveys [1], [2] for other definitions of polyhedrality, main properties and bibliography. In this paper we present a short alternative proof of the basic result on the structure of the unit ball of the polyhedral space...

Boundary values of analytic semigroups and associated norm estimates

Isabelle Chalendar, Jean Esterle, Jonathan R. Partington (2010)

Banach Center Publications

The theory of quasimultipliers in Banach algebras is developed in order to provide a mechanism for defining the boundary values of analytic semigroups on a sector in the complex plane. Then, some methods are presented for deriving lower estimates for operators defined in terms of quasinilpotent semigroups using techniques from the theory of complex analysis.

Currently displaying 1861 – 1880 of 13226