Note Sur les Espaces Db.
A Banach space is called -reflexive if for any cover of by weakly open sets there is a finite subfamily covering some ball of radius 1 centered at a point with . We prove that an infinite-dimensional separable Banach space is -reflexive (-reflexive for some ) if and only if each -net for has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of . We show that the quasireflexive James space is -reflexive for no . We do not know...
For a balanced open subset of a Fréchet space and a dual-Banach space we introduce the topology on the space of holomorphic functions from into . This topology allows us to construct a predual for which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions....
An inductive locally convex limit of reflexive topological spaces is reflexive iff it is almost regular.
For combining two convex bodies C and D to produce a third body, two of the most important ways are the operation ∓ of forming the closure of the vector sum C+D and the operation γ̅ of forming the closure of the convex hull of C ⋃ D. When the containing normed linear space X is reflexive, it follows from weak compactness that the vector sum and the convex hull are already closed, and from this it follows that the class of all rotund bodies in X is stable with respect to the operation ∓ and the class...