Displaying 201 – 220 of 244

Showing per page

Sur la frontière d'un convexe mobile

Manuel D.P. Monteiro Marques (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Siano A , B sottoinsiemi convessi, chiusi e limitati di uno spazio normato X , con le frontiere f r A , f r B . Dimostriamo che h ( A , B ) = h ( f r A , f r B ) , dove h è la metrica di Hausdorff tra sottoinsiemi chiusi di X . Studiamo inoltre la continuità e la semicontinuità superiore ed inferiore di una multifunzione di tipo «frontiera».

Symmetric stochastic matrices with given row sums.

Ryszard Grzaslewicz (1990)

Revista Matemática de la Universidad Complutense de Madrid

Characterizations of extreme infinite symmetric stochastic matrices with respect to arbitrary non-negative vector r are given.

The AR-Property of the spaces of closed convex sets

Katsuro Sakai, Masato Yaguchi (2006)

Colloquium Mathematicae

Let C o n v H ( X ) , C o n v A W ( X ) and C o n v W ( X ) be the spaces of all non-empty closed convex sets in a normed linear space X admitting the Hausdorff metric topology, the Attouch-Wets topology and the Wijsman topology, respectively. We show that every component of C o n v H ( X ) and the space C o n v A W ( X ) are AR. In case X is separable, C o n v W ( X ) is locally path-connected.

The Dirichlet problem for Baire-one functions

Jiří Spurný (2004)

Open Mathematics

Let X be a compact convex set and let ext X stand for the set of all extreme points of X. We characterize those bounded function defined on ext X which can be extended to an affine Baire-one function on the whole set X.

The simplex of tracial quantum symmetric states

Yoann Dabrowski, Kenneth J. Dykema, Kunal Mukherjee (2014)

Studia Mathematica

We show that the space of tracial quantum symmetric states of an arbitrary unital C*-algebra is a Choquet simplex and is a face of the tracial state space of the universal unital C*-algebra free product of A with itself infinitely many times. We also show that the extreme points of this simplex are dense, making it the Poulsen simplex when A is separable and nontrivial. In the course of the proof we characterize the centers of certain tracial amalgamated free product C*-algebras.

Theorems of Krein Milman type for certain convex sets of functions operators

Robert R. Phelps (1970)

Annales de l'institut Fourier

Sufficient conditions are given in order that, for a bounded closed convex subset B of a locally convex space E , the set C ( X , B ) of continuous functions from the compact space X into B , is the uniformly closed convex hull in C ( X , E ) of its extreme points. Applications are made to the unit ball of bounded (or compact, or weakly compact) operators from certain Banach spaces into C ( X ) .

Topological classification of closed convex sets in Fréchet spaces

Taras Banakh, Robert Cauty (2011)

Studia Mathematica

We prove that each non-separable completely metrizable convex subset of a Fréchet space is homeomorphic to a Hilbert space. This resolves a more than 30 years old problem of infinite-dimensional topology. Combined with the topological classification of separable convex sets due to Klee, Dobrowolski and Toruńczyk, this result implies that each closed convex subset of a Fréchet space is homeomorphic to [ 0 , 1 ] × [ 0 , 1 ) m × ( κ ) for some cardinals 0 ≤ n ≤ ω, 0 ≤ m ≤ 1 and κ ≥ 0.

Currently displaying 201 – 220 of 244