Page 1 Next

Displaying 1 – 20 of 98

Showing per page

On a functional-analysis approach to orthogonal sequences problems.

Vladimir P. Fonf, Anatolij M. Plichko, V. V. Shevchik (2001)

RACSAM

Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {xn} ⊂ X una sucesión tal que {Txn} es ortogonal. Se estudian propiedades de {Txn} dependientes de propiedades de {xn}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.

On asymptotically symmetric Banach spaces

M. Junge, D. Kutzarova, E. Odell (2006)

Studia Mathematica

A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ ℕ, for all bounded sequences ( x j i ) j = 1 X , 1 ≤ i ≤ m, for all permutations σ of 1,...,m and all ultrafilters ₁,...,ₘ on ℕ, l i m n , . . . l i m n , | | i = 1 m x n i i | | C l i m n σ ( 1 ) , σ ( 1 ) . . . l i m n σ ( m ) , σ ( m ) | | i = 1 m x n i i | | . We investigate a.s. Banach spaces and several natural variations. X is weakly a.s. (w.a.s.) if the defining condition holds when restricted to weakly convergent sequences ( x j i ) j = 1 . Moreover, X is w.n.a.s. if we restrict the condition further to normalized weakly null sequences. If X is a.s. then all spreading...

On bases in Banach spaces

Tomek Bartoszyński, Mirna Džamonja, Lorenz Halbeisen, Eva Murtinová, Anatolij Plichko (2005)

Studia Mathematica

We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in as well as in separable Banach spaces.

On bibasic systems and a Retherford’s problem

Anatoli Pličko, Paolo Terenzi (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Ogni spazio di Banach ha un sistema bibasico ( x n , f n ) normalizzato; inoltre ogni successione ( x n ) uniformemente minimale appartiene ad un sistema biortogonale limitato ( x n , f n ) , dove ( f n ) è M-basica e normante.

Currently displaying 1 – 20 of 98

Page 1 Next