O některých Banachových problémech
Page 1 Next
A. Pełczyński (1974)
Pokroky matematiky, fyziky a astronomie
Svatopluk Fučík, Alois Kufner (1974)
Pokroky matematiky, fyziky a astronomie
Vladimir P. Fonf, Anatolij M. Plichko, V. V. Shevchik (2001)
RACSAM
Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {xn} ⊂ X una sucesión tal que {Txn} es ortogonal. Se estudian propiedades de {Txn} dependientes de propiedades de {xn}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.
Jun, Kunás K. (1971)
Portugaliae mathematica
A. Pełczynski (1973/1974)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Krzysztof Woźniakowski (2001)
Studia Mathematica
We show that in the space C[-1,1] there exists an orthogonal algebraic polynomial basis with optimal growth of degrees of the polynomials.
M. Junge, D. Kutzarova, E. Odell (2006)
Studia Mathematica
A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ ℕ, for all bounded sequences , 1 ≤ i ≤ m, for all permutations σ of 1,...,m and all ultrafilters ₁,...,ₘ on ℕ, . We investigate a.s. Banach spaces and several natural variations. X is weakly a.s. (w.a.s.) if the defining condition holds when restricted to weakly convergent sequences . Moreover, X is w.n.a.s. if we restrict the condition further to normalized weakly null sequences. If X is a.s. then all spreading...
N. J. Nielsen (1973)
Ivan Singer (1979)
Banach Center Publications
Lech Drewnowski (1986)
Mathematische Zeitschrift
P.K. Jain, N.M. Kapoor (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
P. K. Jain, N. M. Kapoor (1977)
Publications de l'Institut Mathématique
J. Holub (1981)
Studia Mathematica
K. Kazarian (1982)
Studia Mathematica
J. T. Marti (1971)
Colloquium Mathematicae
Tomek Bartoszyński, Mirna Džamonja, Lorenz Halbeisen, Eva Murtinová, Anatolij Plichko (2005)
Studia Mathematica
We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in as well as in separable Banach spaces.
James Holub (1987)
Studia Mathematica
M.A. Fugarolas (1984)
Monatshefte für Mathematik
Anatoli Pličko, Paolo Terenzi (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Ogni spazio di Banach ha un sistema bibasico normalizzato; inoltre ogni successione uniformemente minimale appartiene ad un sistema biortogonale limitato , dove è M-basica e normante.
Ivan SINGER (1971)
Mathematische Annalen
Page 1 Next