Un lemme de H. P. Rosenthal
Page 1
B. Maurey (1972/1973)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Alvaro A. Rodés Usan (1984)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Joaquín Motos Izquierdo, María Jesús Planells (1987)
Collectanea Mathematica
N. Kalton (1970)
Studia Mathematica
Robert James (1990)
Studia Mathematica
Waldemar Pompe (2002)
Colloquium Mathematicae
We prove that a biorthogonal wavelet basis yields an unconditional basis in all spaces with 1 < p < ∞, provided the biorthogonal wavelet set functions satisfy weak decay conditions. The biorthogonal wavelet set is associated with an arbitrary dilation matrix in any dimension.
Andrzej Borzyszkowski (1983)
Studia Mathematica
Charles W. Swartz (1989)
Commentationes Mathematicae Universitatis Carolinae
G. Pisier (1973/1974)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
J. Bourgain (1980/1981)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
T. Figiel (1974/1975)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
T. Figiel (1980)
Studia Mathematica
Rychter, Jan (2000)
Serdica Mathematical Journal
*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler.It is shown that a Banach space X admits an equivalent uniformly Gateaux differentiable norm if it has an unconditional basis and X* admits an equivalent norm which is uniformly rotund in every direction.
Y. Gordon, R. Loewy (1979)
Mathematische Annalen
J. Lindenstrauss (1980/1981)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
P. Casazza, N. Kalton (1999)
Studia Mathematica
We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does . We also give some positive results including a simpler proof that has a unique unconditional basis and a proof that has a unique unconditional basis when , and remains bounded.
C. Leránoz (1992)
Studia Mathematica
We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of must be equivalent to a permutation of a subset of the canonical unit vector basis of . In particular, has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for .
P. Přikryl (1974)
Acta Universitatis Carolinae. Mathematica et Physica
Episkoposian, S.A. (2006)
International Journal of Mathematics and Mathematical Sciences
Petr Přikryl (1977)
Časopis pro pěstování matematiky
Page 1