A Banach space with a symmetric basis which contains no or , and all its symmetric basic sequences are equivalent
We show that the Lindenstrauss basic sequence in l₁ may be used to construct a conditional quasi-greedy basis of l₁, thus answering a question of Wojtaszczyk. We further show that the sequence of coefficient functionals for this basis is not quasi-greedy.
A family is constructed of cardinality equal to the continuum, whose members are totally incomparable hereditarily indecomposable Banach spaces.
We introduce and study a natural class of variable exponent spaces, which generalizes the classical spaces and c₀. These spaces will typically not be rearrangement-invariant but instead they enjoy a good local control of some geometric properties. Some geometric examples are constructed by using these spaces.
For a fusion Banach frame for a Banach space , if is a fusion Banach frame for , then is called a fusion bi-Banach frame for . It is proved that if has an atomic decomposition, then also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.