Matrix subspaces of L₁
If and are two 1-unconditional basic sequences in L₁ with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices with norm embeds into L₁. This generalizes a recent result of Prochno and Schütt.
If and are two 1-unconditional basic sequences in L₁ with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices with norm embeds into L₁. This generalizes a recent result of Prochno and Schütt.
We prove, among other things, that the space C[0,ω₂] has no countably norming Markushevich basis. This answers a question asked by G. Alexandrov and A. Plichko.
We study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis is said to be subsequentially minimal if for every normalized block basis of , there is a further block basis of such that is equivalent to a subsequence of . Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal, and connections with Bourgain’s ℓ¹-index are established. It is also shown that a large class of mixed Tsirelson...