c0, l1 and l∞ in function spaces.
For a Banach space X such that all quotients only admit direct decompositions with a number of summands smaller than or equal to n, we show that every operator T on X can be identified with an n × n scalar matrix modulo the strictly cosingular operators SC(X). More precisely, we obtain an algebra isomorphism from the Calkin algebra L(X)/SC(X) onto a subalgebra of the algebra of n × n scalar matrices which is triangularizable when X is indecomposable. From this fact we get some information on the...
In this paper we extend the result of [6] on the characteristic of convexity of Orlicz spaces to the more general case of Musielak-Orlicz spaces over a non-atomic measure space. Namely, the characteristic of convexity of these spaces is computed whenever the Musielak-Orlicz functions are strictly convex.
In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.
Let 𝓐 be a compatible collection of bounded subsets in a normed linear space. We give a characterization of the following generalized Mazur intersection property: every closed convex set A ∈ 𝓐 is an intersection of balls.
We study strongly exposed points in general Köthe-Bochner Banach spaces X(E). We first give a characterization of strongly exposed points of the set of X-selections of a measurable multifunction Γ. We then apply this result to the study of strongly exposed points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly exposed point of , then |f| is a strongly exposed point of and f(ω)/∥ f(ω)∥ is a strongly exposed point of for μ-almost all ω ∈ S(f).
We introduce the new class of Besicovitch-Musielak-Orlicz almost periodic functions and consider its strict convexity with respect to the Luxemburg norm.
The dual of a Banach space X is of weak type p if and only if the entropy numbers of an r-nuclear operator with values in a Banach space of weak type q belong to the Lorentz sequence space with 1/s + 1/p + 1/q = 1 + 1/r (0 < r < 1, 1 ≤ p, q ≤ 2). It is enough to test this for Y = X*. This extends results of Carl, König and Kühn.
We define the radius of the inscribed and circumscribed circumferences in a triangle located in a real normed space and we obtain new characterizations of inner product spaces.
In this note, we prove that a real or complex Banach space is an -predual space if and only if every four-point subset of is centerable. The real case sharpens Rao’s result in [Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2593–2598] and the complex case is closely related to the characterizations of -predual spaces by Lima [Complex Banach spaces whose duals are -spaces, Israel J. Math. 24 (1976), no. 1, 59–72].
Rosenthal in [11] proved that if is a uniformly bounded sequence of real-valued functions which has no pointwise converging subsequence then has a subsequence which is equivalent to the unit basis of in the supremum norm. Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous real-valued functions, which are defined on a compact metric space, by the aid of a countable ordinal index “”. In this paper we prove some local analogues of the above Rosenthal ’s theorem...
We give a full characterization of the closed one-codimensional subspaces of , in which every bounded set has a Chebyshev center. It turns out that one can consider equivalently only finite sets (even only three-point sets) in our case, but not in general. Such hyperplanes are exactly those which are either proximinal or norm-one complemented.
We apply the Chebyshev coefficients λf and λb, recently introduced by the authors, to obtain some results related to certain geometric properties of Banach spaces. We prove that a real normed space E is an L1-predual if and only if λf(E) = 1/2, and that if a (real or complex) normed space E is a P1 space, then λb(E) equals λb(K), where K is the ground field of E.
The study of circumcenters in different types of triangles in real normed spaces gives new characterizations of inner product spaces.
We prove some multi-dimensional Clarkson type inequalities for Banach spaces. The exact relations between such inequalities and the concepts of type and cotype are shown, which gives a conclusion in an extended setting to M. Milman's observation on Clarkson's inequalities and type. A similar investigation conceming the close connection between random Clarkson inequality and the corresponding concepts of type and cotype is also included. The obtained results complement, unify and generalize several...