Displaying 21 – 40 of 67

Showing per page

Coefficient of orthogonal convexity of some Banach function spaces

Paweł Kolwicz, Stefan Rolewicz (2004)

Studia Mathematica

We study orthogonal uniform convexity, a geometric property connected with property (β) of Rolewicz, P-convexity of Kottman, and the fixed point property (see [19, [20]). We consider the coefficient of orthogonal convexity in Köthe spaces and Köthe-Bochner spaces.

Coincidence of topologies on tensor products of Köthe echelon spaces

J. Bonet, A. Defant, A. Peris, M. Ramanujan (1994)

Studia Mathematica

We investigate conditions under which the projective and the injective topologies coincide on the tensor product of two Köthe echelon or coechelon spaces. A major tool in the proof is the characterization of the επ-continuity of the tensor product of two diagonal operators from l p to l q . Several sharp forms of this result are also included.

Commutators on ( q ) p

Dongyang Chen, William B. Johnson, Bentuo Zheng (2011)

Studia Mathematica

Let T be a bounded linear operator on X = ( q ) p with 1 ≤ q < ∞ and 1 < p < ∞. Then T is a commutator if and only if for all non-zero λ ∈ ℂ, the operator T - λI is not X-strictly singular.

Compactness and countable compactness in weak topologies

W. Kirk (1995)

Studia Mathematica

A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact....

Compactness in approximation spaces

M. Fugarolas (1994)

Colloquium Mathematicae

In this paper we give a characterization of the relatively compact subsets of the so-called approximation spaces. We treat some applications: (1) we obtain some convergence results in such spaces, and (2) we establish a condition for relative compactness of a set lying in a Besov space.

Comparing gaussian and Rademacher cotype for operators on the space of continuous functions

Marius Junge (1996)

Studia Mathematica

We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if ( k ( ( T x k F ) / ( l o g ( k + 1 ) ) ) q ) 1 / q c k ɛ k x k L 2 ( C ( K ) ) , for all sequences ( x k ) k C ( K ) with ( T x k ) k = 1 n decreasing. (2) T is of Rademacher cotype q if and only if ( k ( T x k F ( ( l o g ( k + 1 ) ) q ) ) 1 / q c k g k x k L 2 ( C ( K ) ) , for all sequences ( x k ) k C ( K ) with ( T x k ) k = 1 n decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.

Complemented copies of c0 in C0(Ω).

Juan Carlos Ferrando, Manuel López Pellicer (2001)

RACSAM

En esta nota consideramos una clase de espacios topológicos de Hausdorff localmente compactos (Ω) con la propiedad de que el espacio de Banach C0(Ω) de todas las funciones continuas con valores escalares definidas en Ω que se anulan en el infinito, equipado con la norma supremo, contiene una copia de C0 norma-uno complementada, mientras que C (βΩ) contiene una copia de l∞ linealmente isométrica.

Complemented copies of p spaces in tensor products

Raffaella Cilia, Joaquín M. Gutiérrez (2007)

Czechoslovak Mathematical Journal

We give sufficient conditions on Banach spaces X and Y so that their projective tensor product X π Y , their injective tensor product X ϵ Y , or the dual ( X π Y ) * contain complemented copies of p .

Complex Convexity of Orlicz-Lorentz Spaces and its Applications

Changsun Choi, Anna Kamińska, Han Ju Lee (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We give sufficient and necessary conditions for complex extreme points of the unit ball of Orlicz-Lorentz spaces, as well as we find criteria for the complex rotundity and uniform complex rotundity of these spaces. As an application we show that the set of norm-attaining operators is dense in the space of bounded linear operators from d * ( w , 1 ) into d(w,1), where d * ( w , 1 ) is a predual of a complex Lorentz sequence space d(w,1), if and only if wi ∈ c₀∖ℓ₂.

Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators

Małgorzata Marta Czerwińska, Anna Kamińska (2010)

Studia Mathematica

We investigate the relationships between strongly extreme, complex extreme, and complex locally uniformly rotund points of the unit ball of a symmetric function space or a symmetric sequence space E, and of the unit ball of the space E(ℳ,τ) of τ-measurable operators associated to a semifinite von Neumann algebra (ℳ,τ) or of the unit ball in the unitary matrix space C E . We prove that strongly extreme, complex extreme, and complex locally uniformly rotund points x of the unit ball of the symmetric...

Currently displaying 21 – 40 of 67