Displaying 261 – 280 of 1093

Showing per page

Embedding a topological group into its WAP-compactification

Stefano Ferri, Jorge Galindo (2009)

Studia Mathematica

We prove that the topology of the additive group of the Banach space c₀ is not induced by weakly almost periodic functions or, what is the same, that this group cannot be represented as a group of isometries of a reflexive Banach space. We show, in contrast, that additive groups of Schwartz locally convex spaces are always representable as groups of isometries on some reflexive Banach space.

Equilateral sets in Banach spaces of the form C(K)

Sophocles K. Mercourakis, Georgios Vassiliadis (2015)

Studia Mathematica

We show that for "most" compact nonmetrizable spaces, the unit ball of the Banach space C(K) contains an uncountable 2-equilateral set. We also give examples of compact nonmetrizable spaces K such that the minimum cardinality of a maximal equilateral set in C(K) is countable.

Estimates for projections in Banach spaces and existence of direct complements

Gunther Dirr, Vladimir Rakočević, Harald K. Wimmer (2005)

Studia Mathematica

Let W and L be complementary subspaces of a Banach space X and let P(W,L) denote the projection on W along L. We obtain a sufficient condition for a subspace M of X to be complementary to W and we derive estimates for the norm of P(W,L) - P(W,M).

Estimates on inner and outer radii of unit balls in normed spaces

Horst Martini, Zokhrab Mustafaev (2011)

Colloquium Mathematicae

The purpose of this paper is to continue the investigations on extremal values for inner and outer radii of the unit ball of a finite-dimensional real Banach space for the Holmes-Thompson and Busemann measures. Furthermore, we give a related new characterization of ellipsoids in d via codimensional cross-section measures.

Estimation of the Szlenk index of Banach spaces via Schreier spaces

Ryan Causey (2013)

Studia Mathematica

For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index ω α + 1 which is universal for the class of separable Banach spaces with Szlenk index not exceeding ω α . Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.

Euclidean arrangements in Banach spaces

Daniel J. Fresen (2015)

Studia Mathematica

We study the way in which the Euclidean subspaces of a Banach space fit together, somewhat in the spirit of the Kashin decomposition. The main tool that we introduce is an estimate regarding the convex hull of a convex body in John's position with a Euclidean ball of a given radius, which leads to a new and simplified proof of the randomized isomorphic Dvoretzky theorem. Our results also include a characterization of spaces with nontrivial cotype in terms of arrangements of Euclidean subspaces.

Currently displaying 261 – 280 of 1093