The weak distance between Banach spaces with a symmetric basis.
For Banach spaces and , let denote the space of all continuous compact operators from to endowed with the operator norm. A Banach space has the property if every Grothendieck subset of is relatively weakly compact. In this paper we study Banach spaces with property . We investigate whether the spaces and have the property, when and have the property.
Let X be a Banach space. If the natural projection p:X*** → X* is sequentially weak*-weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.
It is proved that a Banach space X has the Lyapunov property if its subspace Y and the quotient space X/Y have it.
Let be a commuting approximating sequence of the Banach space X leaving the closed subspace A ⊂ X invariant. Then we prove three-space results of the following kind: If the operators Rₙ induce basis projections on X/A, and X or A is an -space, then both X and A have bases. We apply these results to show that the spaces and have bases whenever Λ ⊂ ℤ and ℤ∖Λ is a Sidon set.
It is shown that there is a subspace of for which is isomorphic to such that does not have the approximation property. On the other hand, for there is a subspace of such that does not have the approximation property (AP) but the quotient space is isomorphic to . The result is obtained by defining random “Enflo-Davie spaces” which with full probability fail AP for all and have AP for all . For , are isomorphic to .
In this article, we formalize topological properties of real normed spaces. In the first part, open and closed, density, separability and sequence and its convergence are discussed. Then we argue properties of real normed subspace. Then we discuss linear functions between real normed speces. Several kinds of subspaces induced by linear functions such as kernel, image and inverse image are considered here. The fact that Lipschitz continuity operators preserve convergence of sequences is also refered...
The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
We study the question of when the set of norm attaining functionals on a Banach space is a linear space. We show that this property is preserved by factor reflexive proximinal subspaces in spaces and generally by taking quotients by proximinal subspaces. We show, for (ℓ₂) and c₀-direct sums of families of reflexive spaces, the transitivity of proximinality for factor reflexive subspaces. We also investigate the linear structure of the set of norm attaining functionals on hyperplanes of c₀ and...
The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.
In this paper we introduce two mappings associated with the lower and upper semi-inner product and and with semi-inner products (in the sense of Lumer) which generate the norm of a real normed linear space, and study properties of monotonicity and boundedness of these mappings. We give a refinement of the Schwarz inequality, applications to the Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of best approximants.