Displaying 121 – 140 of 1093

Showing per page

Banach spaces and bilipschitz maps

J. Väisälä (1992)

Studia Mathematica

We show that a normed space E is a Banach space if and only if there is no bilipschitz map of E onto E ∖ {0}.

Banach spaces in which all multilinear forms are weakly sequentially continuous

Jesús Castillo, Ricardo García, Raquel Gonzalo (1999)

Studia Mathematica

We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an...

Banach spaces which admit a norm with the uniform Kadec-Klee property

S. Dilworth, Maria Girardi, Denka Kutzarova (1995)

Studia Mathematica

Several results are established about Banach spaces Ӿ which can be renormed to have the uniform Kadec-Klee property. It is proved that all such spaces have the complete continuity property. We show that the renorming property can be lifted from Ӿ to the Lebesgue-Bochner space L 2 ( Ӿ ) if and only if Ӿ is super-reflexive. A basis characterization of the renorming property for dual Banach spaces is given.

Banach spaces which embed into their dual

Valerio Capraro, Stefano Rossi (2011)

Colloquium Mathematicae

We use Birkhoff-James' orthogonality in Banach spaces to provide new conditions for the converse of the classical Riesz representation theorem.

Banach-Saks property in some Banach sequence spaces

Yunan Cui, Henryk Hudzik, Ryszard Płuciennik (1997)

Annales Polonici Mathematici

It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.

Bi-Lipschitz embeddings of hyperspaces of compact sets

Jeremy T. Tyson (2005)

Fundamenta Mathematicae

We study the bi-Lipschitz embedding problem for metric compacta hyperspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly disconnected metric space X admits a bi-Lipschitz embedding in ℓ². If X is a countable compact metric space containing at most n nonisolated points, there is a Lipschitz embedding of K(X) in n + 1 ; in the presence of an additional convergence condition, this embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K([0,1]) of the...

Currently displaying 121 – 140 of 1093