Page 1

Displaying 1 – 18 of 18

Showing per page

The Point of Continuity Property: Descriptive Complexity and Ordinal Index

Bossard, Benoit, López, Ginés (1998)

Serdica Mathematical Journal

∗ Supported by D.G.I.C.Y.T. Project No. PB93-1142Let X be a separable Banach space without the Point of Continuity Property. When the set of closed subsets of its closed unit ball is equipped with the standard Effros-Borel structure, the set of those which have the Point of Continuity Property is non-Borel. We also prove that, for any separable Banach space X, the oscillation rank of the identity on X (an ordinal index which quantifies the Point of Continuity Property) is determined by the subspaces...

The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c 0

L. Drewnowski, G. Emmanuele (1993)

Studia Mathematica

Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of c 0 . Then the Bochner space L 1 ( m ; X ) is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.

The projective tensor product (II): the Radon-Nikodym property.

Joe Diestel, Jan Fourie, Johan Swart (2006)

RACSAM

In this paper we discuss the problem of when the projective tensor product of two Banach spaces has the Radon-Nikodym property. We give a detailed exposition of the famous examples of Jean Bourgain and Gilles Pisier showing that there are Banach spaces X and Y such that each has the Radon-Nikodym property but for which their projective tensor product does not; this result depends on the classical theory of absolutely summing, integral and nuclear operators, as well as the famous Grothendieck inequality...

The weak Phillips property

Ali Ülger (2001)

Colloquium Mathematicae

Let X be a Banach space. If the natural projection p:X*** → X* is sequentially weak*-weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.

Theorems of Krein Milman type for certain convex sets of functions operators

Robert R. Phelps (1970)

Annales de l'institut Fourier

Sufficient conditions are given in order that, for a bounded closed convex subset B of a locally convex space E , the set C ( X , B ) of continuous functions from the compact space X into B , is the uniformly closed convex hull in C ( X , E ) of its extreme points. Applications are made to the unit ball of bounded (or compact, or weakly compact) operators from certain Banach spaces into C ( X ) .

Currently displaying 1 – 18 of 18

Page 1