Page 1

Displaying 1 – 11 of 11

Showing per page

Ensembles de Rosenthal et propriété de Radon-Nikodym relative

Mohammad Daher (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

Soient G un groupe abélien compact métrisable, Γ son groupe dual et Λ Γ un ensemble de Rosenthal. Nous montrons que L Λ ( G , Y * ) = C Λ ( G , Y * ) , lorsque Y * est un espace de Banach ayant la propriété de Radon-Nikodym et C Λ ( G , Y * ) est faiblement séquentiellement complet. Nous en déduisons une condition suffisante pour que le produit de deux ensembles de Rosenthal en soit encore un pour le groupe produit. Ensuite nous introduisons la propriété de Radon-Nikodym relative R N - Λ , une généralisation de la propriété de Radon-Nikodym analytique....

Extension of multilinear operators on Banach spaces.

Félix Cabello Sánchez, R. García, I. Villanueva (2000)

Extracta Mathematicae

These notes deal with the extension of multilinear operators on Banach spaces. The organization of the paper is as follows. In the first section we study the extension of the product on a Banach algebra to the bidual and some related structures including modules and derivations. Tha approach is elementary and uses the classical Arens' technique. Actually most of the results of section 1 can be easily derived from section 2. In section 2 we consider the problem of extending multilinear forms on a...

Extremely non-complex Banach spaces

Miguel Martín, Javier Merí (2011)

Open Mathematics

A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.

Currently displaying 1 – 11 of 11

Page 1