Page 1

Displaying 1 – 10 of 10

Showing per page

Radon-Nikodým compact spaces of low weight and Banach spaces

Antonio Avilés (2005)

Studia Mathematica

We prove that a continuous image of a Radon-Nikodým compact of weight less than b is Radon-Nikodým compact. As a Banach space counterpart, subspaces of Asplund generated Banach spaces of density character less than b are Asplund generated. In this case, in addition, there exists a subspace of an Asplund generated space which is not Asplund generated and which has density character exactly b.

Radon-Nikodym property

Surjit Singh Khurana (2017)

Commentationes Mathematicae Universitatis Carolinae

For a Banach space E and a probability space ( X , 𝒜 , λ ) , a new proof is given that a measure μ : 𝒜 E , with μ λ , has RN derivative with respect to λ iff there is a compact or a weakly compact C E such that | μ | C : 𝒜 [ 0 , ] is a finite valued countably additive measure. Here we define | μ | C ( A ) = sup { k | μ ( A k ) , f k | } where { A k } is a finite disjoint collection of elements from 𝒜 , each contained in A , and { f k } E ' satisfies sup k | f k ( C ) | 1 . Then the result is extended to the case when E is a Frechet space.

Remarks on continuous images of Radon-Nikodým compacta

Marián J. Fabián, Martin Heisler, Eva Matoušková (1998)

Commentationes Mathematicae Universitatis Carolinae

A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact K we prove: If K is totally disconnected, then it is Radon-Nikod’ym compact. If K is adequate, then it is even Eberlein compact.

Representation of operators with martingales and the Radon-Nikodým property.

Manuel González, Antonio Martínez-Abejón, Javier Pello-García (2004)

Extracta Mathematicae

The Radon-Nikodým property was introduced to describe those Banach spaces X for which all operators acting between L1 and X have a representation function. These spaces can be characterized in terms of martingales, as those spaces in which every uniformly bounded martingale converges. In the present work we study some classes of operators defined upon their behaviour with respect to the convergence of such martingales. We prove that an operator preserves the non-convergence of uniformly bounded...

Currently displaying 1 – 10 of 10

Page 1