Garnir's dream spaces with Hamel bases.
A separable Banach space X contains isomorphically if and only if X has a bounded fundamental total -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total -biorthogonal system.
A classical result of Cembranos and Freniche states that the C(K,X) space contains a complemented copy of c₀ whenever K is an infinite compact Hausdorff space and X is an infinite-dimensional Banach space. This paper takes this result as a starting point and begins a study of conditions under which the spaces C(α), α < ω₁, are quotients of or complemented in C(K,X). In contrast to the c₀ result, we prove that if C(βℕ ×[1,ω],X) contains a complemented copy of then X contains a copy of c₀. Moreover,...
We study universal Dirichlet series with respect to overconvergence, which are absolutely convergent in the right half of the complex plane. In particular we obtain estimates on the growth of their coefficients. We can then compare several classes of universal Dirichlet series.