Page 1

Displaying 1 – 9 of 9

Showing per page

L -limited-like properties on Banach spaces

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited * and the p -(SR * ) properties and characterize these classes of Banach spaces in terms of p - L -limited * and p -Right * subsets. The p - L -limited * property is studied in some spaces of operators.

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

Lipschitz and uniform embeddings into

N. J. Kalton (2011)

Fundamenta Mathematicae

We show that there is no uniformly continuous selection of the quotient map Q : / c relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a no Lipschitz retraction of X** onto X; in fact there is no uniformly continuous retraction from B X * * onto B X .

Currently displaying 1 – 9 of 9

Page 1