Packing constant and Musielak-Orlicz sequence spaces equipped with the Luxemburg norm.
We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.
We show that, given a Banach space X, the Lipschitz-free space over X, denoted by ℱ(X), is isomorphic to . Some applications are presented, including a nonlinear version of Pełczyński’s decomposition method for Lipschitz-free spaces and the identification up to isomorphism between ℱ(ℝⁿ) and the Lipschitz-free space over any compact metric space which is locally bi-Lipschitz embeddable into ℝⁿ and which contains a subset that is Lipschitz equivalent to the unit ball of ℝⁿ. We also show that ℱ(M)...
This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of are characterized and, in with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation...