Loading [MathJax]/extensions/MathZoom.js
We suggest a method of renorming of spaces of operators which are suitably approximable by sequences of operators from a given class. Further we generalize J. Johnsons’s construction of ideals of compact operators in the space of bounded operators and observe e.g. that under our renormings compact operators are -ideals in the: space of 2-absolutely summing operators or in the space of operators factorable through a Hilbert space.
In the first part of the paper we prove some new result improving all those already known about the equivalence of the nonexistence of a projection (of any norm) onto the space of compact operators and the containment of in the same space of compact operators. Then we show several results implying that the space of compact operators is uncomplemented by norm one projections in larger spaces of operators. The paper ends with a list of questions naturally rising from old results and the results...
Throughout this note, whenever K is a compact space C(K) denotes the Banach space of continuous functions on K endowed with the sup norm. Though it is well known that every infinite dimensional Banach space contains uncomplemented subspaces, things may be different when only C(K) spaces are considered. For instance, every copy of l∞ = C(BN) is complemented wherever it is found. In [5] Pelzcynski found: Theorem 1. Let K be a compact metric space. If a separable Banach space X contains a subspace...
We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does . We also give some positive results including a simpler proof that has a unique unconditional basis and a proof that has a unique unconditional basis when , and remains bounded.
We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of must be equivalent to a permutation of a subset of the canonical unit vector basis of . In particular, has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for .
Currently displaying 1 –
13 of
13