Displaying 141 – 160 of 248

Showing per page

Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure

Zbigniew Lipecki (2015)

Commentationes Mathematicae Universitatis Carolinae

Let 𝔐 and be algebras of subsets of a set Ω with 𝔐 , and denote by E ( μ ) the set of all quasi-measure extensions of a given quasi-measure μ on 𝔐 to . We give some criteria for order boundedness of E ( μ ) in b a ( ) , in the general case as well as for atomic μ . Order boundedness implies weak compactness of E ( μ ) . We show that the converse implication holds under some assumptions on 𝔐 , and μ or μ alone, but not in general.

Order convexity and concavity of Lorentz spaces Λ p , w , 0 < p < ∞

Anna Kamińska, Lech Maligranda (2004)

Studia Mathematica

We study order convexity and concavity of quasi-Banach Lorentz spaces Λ p , w , where 0 < p < ∞ and w is a locally integrable positive weight function. We show first that Λ p , w contains an order isomorphic copy of l p . We then present complete criteria for lattice convexity and concavity as well as for upper and lower estimates for Λ p , w . We conclude with a characterization of the type and cotype of Λ p , w in the case when Λ p , w is a normable space.

Order intervals in C ( K ) . Compactness, coincidence of topologies, metrizability

Zbigniew Lipecki (2022)

Commentationes Mathematicae Universitatis Carolinae

Let K be a compact space and let C ( K ) be the Banach lattice of real-valued continuous functions on K . We establish eleven conditions equivalent to the strong compactness of the order interval [ 0 , x ] in C ( K ) , including the following ones: (i) { x > 0 } consists of isolated points of K ; (ii) [ 0 , x ] is pointwise compact; (iii) [ 0 , x ] is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on [ 0 , x ] ; (v) the strong and weak topologies coincide on [ 0 , x ] . Moreover, the weak topology and that of pointwise convergence...

Order-theoretic properties of some sets of quasi-measures

Zbigniew Lipecki (2017)

Commentationes Mathematicae Universitatis Carolinae

Let 𝔐 and be algebras of subsets of a set Ω with 𝔐 , and denote by E ( μ ) the set of all quasi-measure extensions of a given quasi-measure μ on 𝔐 to . We show that E ( μ ) is order bounded if and only if it is contained in a principal ideal in b a ( ) if and only if it is weakly compact and extr E ( μ ) is contained in a principal ideal in b a ( ) . We also establish some criteria for the coincidence of the ideals, in b a ( ) , generated by E ( μ ) and extr E ( μ ) .

Plus-Minus Property as a Generalization of the Daugavet Property

Shepelska, Varvara (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 46B20. Secondary 47A99, 46B42.It was shown in [2] that the most natural equalities valid for every rank-one operator T in real Banach spaces lead either to the Daugavet equation ||I+T|| = 1 + ||T|| or to the equation ||I − T|| = ||I+T||. We study if the spaces where the latter condition is satisfied for every finite-rank operator inherit the properties of Daugavet spaces.

Positive bases in ordered subspaces with the Riesz decomposition property

Vasilios Katsikis, Ioannis A. Polyrakis (2006)

Studia Mathematica

In this article we suppose that E is an ordered Banach space whose positive cone is defined by a countable family = f i | i of positive continuous linear functionals on E, i.e. E₊ = x ∈ E | f i ( x ) 0 for each i, and we study the existence of positive (Schauder) bases in ordered subspaces X of E with the Riesz decomposition property. We consider the elements x of E as sequences x = ( f i ( x ) ) and we develop a process of successive decompositions of a quasi-interior point of X₊ which at each step gives elements with smaller support....

Rademacher functions in BMO

Sergey V. Astashkin, Mikhail Leibov, Lech Maligranda (2011)

Studia Mathematica

The Rademacher sums are investigated in the BMO space on [0,1]. They span an uncomplemented subspace, in contrast to the dyadic B M O d space on [0,1], where they span a complemented subspace isomorphic to l₂. Moreover, structural properties of infinite-dimensional closed subspaces of the span of the Rademacher functions in BMO are studied and an analog of the Kadec-Pełczyński type alternative with l₂ and c₀ spaces is proved.

Rademacher functions in Cesàro type spaces

Sergei V. Astashkin, Lech Maligranda (2010)

Studia Mathematica

The Rademacher sums are investigated in the Cesàro spaces C e s p (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces K p , w on [0,1]. They span l₂ space in C e s p for any 1 ≤ p < ∞ and in K p , w if and only if the weight w is larger than t l o g p / 2 ( 2 / t ) on (0,1). Moreover, the span of the Rademachers is not complemented in C e s p for any 1 ≤ p < ∞ or in K 1 , w for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is a complemented...

Currently displaying 141 – 160 of 248