On -nearly uniform convex property in generalized Cesàro sequence spaces.
We study property (β) in Köthe-Bochner sequence spaces E(X), where E is any Köthe sequence space and X is an arbitrary Banach space. The question of whether or not this geometric property lifts from X and E to E(X) is examined. We prove that if dim X = ∞, then E(X) has property (β) if and only if X has property (β) and E is orthogonally uniformly convex. It is also showed that if dim X < ∞, then E(X) has property (β) if and only if E has property (β). Our results essentially extend and improve...
We prove that the Musielak-Orlicz sequence space with the Orlicz norm has property (β) iff it is reflexive. It is a generalization and essential extension of the respective results from [3] and [5]. Moreover, taking an arbitrary Musielak-Orlicz function instead of an N-function we develop new methods and techniques of proof and we consider a wider class of spaces than in [3] and [5].
Criteria for strong U-points, compactly locally uniformly rotund points, weakly compactly locally uniformly rotund points and locally uniformly rotund points in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm are given.
Given a normalized Orlicz function M we provide an easy formula for a distribution such that, if X is a random variable distributed accordingly and X₁,...,Xₙ are independent copies of X, then , where is a positive constant depending only on p. In case p = 2 we need the function t ↦ tM’(t) - M(t) to be 2-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into L₁[0,1]. We also provide a general result replacing the -norm by an arbitrary N-norm. This...
In this paper we define a generalized Cesàro sequence space and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space posses property (H) and property (G), and it is rotund, where is a bounded sequence of positive real numbers with for all .
It is shown that every uncountable symmetric basic set in an F-space with a symmetric basis is equivalent to a basic set generated by one vector. We apply this result to investigate the structure of uncountable symmetric basic sets in Orlicz and Lorentz spaces.
We generalize some results concerning the classical notion of a spreading model to spreading models of order ξ. Among other results, we prove that the set of ξ-order spreading models of a Banach space X generated by subordinated weakly null ℱ-sequences endowed with the pre-partial order of domination is a semilattice. Moreover, if contains an increasing sequence of length ω then it contains an increasing sequence of length ω₁. Finally, if is uncountable, then it contains an antichain of size...