The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Some new examples of K-monotone couples of the type (X,X(w)), where X is a symmetric space on [0,1] and w is a weight on [0,1], are presented. Based on the property of w-decomposability of a symmetric space we show that, if a weight w changes sufficiently fast, all symmetric spaces X with non-trivial Boyd indices such that the Banach couple (X,X(w)) is K-monotone belong to the class of ultrasymmetric Orlicz spaces. If, in addition, the fundamental function of X is for some p ∈ [1,∞], then . At...
Our main result shows that for a large class of nonlinear local mappings between Besov and Sobolev space, interpolation is an exceptional low dimensional phenomenon. This extends previous results by Kumlin [13] from the case of analytic mappings to Lipschitz and Hölder continuous maps (Corollaries 1 and 2), and which go back to ideas of the late B.E.J. Dahlberg [8].
Let denote the usual Hardy space of analytic functions on the unit disc . We prove that for every function there exists a linear operator defined on which is simultaneously bounded from to and from to such that . Consequently, we get the following results :1) is a Calderon-Mitjagin couple;2) for any interpolation functor , we have , where denotes the closed subspace of of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy...
The internal and boundary exact null
controllability of nonlinear convective heat equations with homogeneous
Dirichlet boundary conditions are studied. The methods we use combine
Kakutani fixed point theorem, Carleman estimates for the backward adjoint
linearized system, interpolation inequalities and some estimates in the
theory of parabolic boundary value problems in Lk.
Currently displaying 1 –
6 of
6