Mapping in normed linear spaces and characterization of orthogonality problem of best approximations in 2-norm.
The set of all bounded linear idempotent operators on a Banach space X is a poset with the partial order defined by P ≤ Q if PQ = QP = P. Another natural relation on the set of idempotent operators is the orthogonality relation defined by P ⊥ Q ⇔ PQ = QP = 0. We briefly survey known theorems on maps on idempotents preserving order or orthogonality. We discuss some related results and open problems. The connections with physics, geometry, theory of automorphisms, and linear preserver problems will...
Properties of metrically convex functions in normed spaces (of any dimension) are considered. The main result, Theorem 4.2, gives necessary and sufficient conditions for a function to be metrically convex, expressed in terms of the classical convexity theory.