Tangent cones, starshape and convexity.
A topological space (T,τ) is said to be fragmented by a metric d on T if each non-empty subset of T has non-empty relatively open subsets of arbitrarily small d-diameter. The basic theorem of the present paper is the following. Let (M,ϱ) be a metric space with ϱ bounded and let D be an arbitrary index set. Then for a compact subset K of the product space the following four conditions are equivalent: (i) K is fragmented by , where, for each S ⊂ D, . (ii) For each countable subset A of D, is...
In the theory of normed spaces, we have the concept of bounded linear functionals and dual spaces. Now, given an -normed space, we are interested in bounded multilinear -functionals and -dual spaces. The concept of bounded multilinear -functionals on an -normed space was initially intoduced by White (1969), and studied further by Batkunde et al., and Gozali et al. (2010). In this paper, we revisit the definition of bounded multilinear -functionals, introduce the concept of -dual spaces, and...
Let J(n) be the hyperspace of all centrally symmetric compact convex bodies , n ≥ 2, for which the ordinary Euclidean unit ball is the ellipsoid of maximal volume contained in A (the John ellipsoid). Let be the complement of the unique O(n)-fixed point in J(n). We prove that: (1) the Banach-Mazur compactum BM(n) is homeomorphic to the orbit space J(n)/O(n) of the natural action of the orthogonal group O(n) on J(n); (2) J(n) is an O(n)-AR; (3) is an Eilenberg-MacLane space ; (4) is noncontractible;...
It is shown that there is a subspace of for which is isomorphic to such that does not have the approximation property. On the other hand, for there is a subspace of such that does not have the approximation property (AP) but the quotient space is isomorphic to . The result is obtained by defining random “Enflo-Davie spaces” which with full probability fail AP for all and have AP for all . For , are isomorphic to .