Higher order differentiability of nonlinear operators on normed spaces. II.
In this article, we shall extend the formalization of [10] to discuss higher-order partial differentiation of real valued functions. The linearity of this operator is also proved (refer to [10], [12] and [13] for partial differentiation).
Let and be two complex Banach spaces, a nonempty subset of and a compact subset of . The concept of holomorphy type between and , and the natural locally convex topology on the vector space of all holomorphic mappings of a given holomorphy type from to were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space of all germs of holomorphic mappings into around of a given holomorphy type , and study its interplay with and some...
The authors have presented some articles about Lebesgue type integration theory. In our previous articles [12, 13, 26], we assumed that some σ-additive measure existed and that a function was measurable on that measure. However the existence of such a measure is not trivial. In general, because the construction of a finite additive measure is comparatively easy, to induce a σ-additive measure a finite additive measure is used. This is known as an E. Hopf's extension theorem of measure [15].