General convexity of some functionals in seminormed spaces and seminormed algebras.
In this paper we deal with weakly upper semi-continuous set-valued maps, taking arbitrary non-empty values, from a non-metric domain to a Banach space. We obtain selectors having the point of continuity property relative to the norm topology for a large class of compact spaces as a domain. Exact conditions under which the selector is of the first Borel class are also investigated.
Let be a norm on the algebra of all matrices over . An interesting problem in matrix theory is that “Are there two norms and on such that for all ?” We will investigate this problem and its various aspects and will discuss some conditions under which .
A separable Banach space X contains isomorphically if and only if X has a bounded fundamental total -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total -biorthogonal system.