Some new deterministic and random variational inequalities and their applications.
We characterize Hilbert spaces among Banach spaces in terms of transitivity with respect to nicely behaved subgroups of the isometry group. For example, the following result is typical: If X is a real Banach space isomorphic to a Hilbert space and convex-transitive with respect to the isometric finite-dimensional perturbations of the identity, then X is already isometric to a Hilbert space.
We give a simple proof of the relation between the spectra of the difference and product of any two idempotents in a Banach algebra. We also give the relation between the spectra of their sum and product.
The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set in a topological vector space is stable if the midpoint map , is open with respect to the inherited topology in . The main theorem is established: In the Orlicz space the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.
Every frame in Hilbert space contains a subsequence equivalent to an orthogonal basis. If a frame is n-dimensional then this subsequence has length (1 - ε)n. On the other hand, there is a frame which does not contain bases with brackets.
It is shown that if a Banach space X is not isomorphic to a Hilbert space then the spaces ℓ₂(X) and Rad(X) contain a subspace Z without local unconditional structure, and therefore without an unconditional basis. Moreover, if X is of cotype r < ∞, then a subspace Z of ℓ₂(X) can be constructed without local unconditional structure but with 2-dimensional unconditional decomposition, hence also with basis.
We study the problem of the existence of a common algebraic complement for a pair of closed subspaces of a Banach space. We prove the following two characterizations: (1) The pairs of subspaces of a Banach space with a common complement coincide with those pairs which are isomorphic to a pair of graphs of bounded linear operators between two other Banach spaces. (2) The pairs of subspaces of a Banach space X with a common complement coincide with those pairs for which there exists an involution...
Let be a self-affine measure associated with an expanding matrix M and a finite digit set D. We study the spectrality of when |det(M)| = |D| = p is a prime. We obtain several new sufficient conditions on M and D for to be a spectral measure with lattice spectrum. As an application, we present some properties of the digit sets of integral self-affine tiles, which are connected with a conjecture of Lagarias and Wang.