Entire functions on locally convex spaces and convolution operators
On étudie dans ce travail les projections de norme 1 du bidual d’un espace de Banach sur l’image canonique de dans . On montre que dans un certain nombre de cas, il y a unicité de la projection de norme 1. On en déduit des théorèmes d’existence et d’unicité du prédual de . On donne ensuite diverses applications, en particulier aux espaces dont la norme est différentiable sur un ensemble dense et aux espaces ne contenant pas .
We deal with projective limits of classes of functions and prove that: (a) the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet spaces ; (b) there is no continuous linear extension map from into ; (c) under some additional assumption on , there is an explicit extension map from into by use of a modification of the Chebyshev polynomials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].
We study a rigidity property, at the vertex of some plane sector, for Gevrey classes of holomorphic functions in the sector. For this purpose, we prove a linear continuous version of Borel-Ritt's theorem with Gevrey conditions
The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
We suggest a modification of the Pawłucki and Pleśniak method to construct a continuous linear extension operator by means of interpolation polynomials. As an illustration we present explicitly the extension operator for the space of Whitney functions given on the Cantor ternary set.
In [3], J. Chaumat and A.-M. Chollet prove, among other things, a Whitney extension theorem, for jets on a compact subset E of ℝⁿ, in the case of intersections of non-quasi-analytic classes with moderate growth and a Łojasiewicz theorem in the regular situation. These intersections are included in the intersection of Gevrey classes. Here we prove an extension theorem in the case of more general intersections such that every -Whitney jet belongs to one of them. We also prove a linear extension theorem...