Displaying 61 – 80 of 151

Showing per page

Intersections of minimal prime ideals in the rings of continuous functions

Swapan Kumar Ghosh (2006)

Commentationes Mathematicae Universitatis Carolinae

A space X is called μ -compact by M. Mandelker if the intersection of all free maximal ideals of C ( X ) coincides with the ring C K ( X ) of all functions in C ( X ) with compact support. In this paper we introduce φ -compact and φ ' -compact spaces and we show that a space is μ -compact if and only if it is both φ -compact and φ ' -compact. We also establish that every space X admits a φ -compactification and a φ ' -compactification. Examples and counterexamples are given.

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

Locally constant functions

Joan Hart, Kenneth Kunen (1996)

Fundamenta Mathematicae

Let X be a compact Hausdorff space and M a metric space. E 0 ( X , M ) is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which E 0 ( X , M ) is all of C(X,M). These include βℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of E 0 ( X , M ) as a normed linear space. We also build three first countable Eberlein...

Mosco convergence of sequences of homogeneous polynomials.

J. Ferrera (1998)

Revista Matemática Complutense

In this paper we give a characterization of uniform convergence on weakly compact sets, for sequences of homogeneous polynomials in terms of the Mosco convergence of their level sets. The result is partially extended for holomorphic functions. Finally we study the relationship with other convergences.

Multiplicative functionals on algebras of differentiable functions.

Jesús A. Jaramillo (1990)

Extracta Mathematicae

Let Ω be an open subset of a real Banach space E and, for 1 ≤ m ≤, let Cm(Ω) denote the algebra of all m-times continuously Fréchet differentiable real functions defined on Ω. We are concerned here with the question as to wether every nonzero algebra homomorphism φ: Cm(Ω) → R is given by evaluation at some point of Ω, i.e., if there exists some a ∈ Ω such that φ(f) = f(a) for each f ∈ Cm(Ω). This problem has been considered in [1,4,5] and [6]. In [6], a positive answer is given in the case that...

Multipliers and hereditary subalgebras of operator algebras

Damon M. Hay (2011)

Studia Mathematica

We generalize some technical results of Glicksberg to the realm of general operator algebras and use them to give a characterization of open and closed projections in terms of certain multiplier algebras. This generalizes a theorem of J. Wells characterizing an important class of ideals in uniform algebras. The difficult implication in our main theorem is that if a projection is open in an operator algebra, then the multiplier algebra of the associated hereditary subalgebra arises as the closure...

Currently displaying 61 – 80 of 151