Quantitative estimates of N.N. Luzin's C-property for classes of integrable functions
We prove that a K-quasiconformal mapping f:ℝ² → ℝ² which maps the unit disk onto itself preserves the space EXP() of exponentially integrable functions over , in the sense that u ∈ EXP() if and only if . Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate for every u ∈ EXP(). Similarly, we consider the distance from in EXP and we prove that if f: Ω → Ω’ is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then for every u ∈ EXP(). We also prove that...