Quantitative estimates of N.N. Luzin's C-property for classes of integrable functions
Page 1
K. Oskolkow (1979)
Banach Center Publications
Fernando Farroni, Raffaella Giova (2011)
Studia Mathematica
We prove that a K-quasiconformal mapping f:ℝ² → ℝ² which maps the unit disk onto itself preserves the space EXP() of exponentially integrable functions over , in the sense that u ∈ EXP() if and only if . Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate for every u ∈ EXP(). Similarly, we consider the distance from in EXP and we prove that if f: Ω → Ω’ is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then for every u ∈ EXP(). We also prove that...
S. Guerre (1979/1980)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Michel Schreiber (1972)
Annales de l'I.H.P. Probabilités et statistiques
Charles Castaing (1972)
Mémoires de la Société Mathématique de France
J. Bastero, Y. Raynaud (1989)
Studia Mathematica
N. Kalton, N. Peck (1979)
Studia Mathematica
Page 1