A Best Covering Problem.
An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of “blocks” and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s interpolation functor (see [26]) and its Gagliardo closure on couples of...
In this note we present an affirmative answer to the problem posed by M. Baronti and C. Franchetti (oral communication) concerning a characterization of Lp-spaces among Orlicz sequence spaces. In fact, we show a more general characterization of Orlicz spaces isometric to Lp-spaces.
Hagler and the first named author introduced a class of hereditarily Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily Banach spaces for . Here we use these spaces to introduce a new class of hereditarily Banach spaces analogous of the space of Popov. In particular, for the spaces are further examples of hereditarily Banach spaces failing the Schur property.
For an increasing sequence (ωₙ) of algebra weights on ℝ⁺ we study various properties of the Fréchet algebra A(ω) = ⋂ ₙ L¹(ωₙ) obtained as the intersection of the weighted Banach algebras L¹(ωₙ). We show that every endomorphism of A(ω) is standard, if for all n ∈ ℕ there exists m ∈ ℕ such that as t → ∞. Moreover, we characterise the continuous derivations on this algebra: Let M(ωₙ) be the corresponding weighted measure algebras and let B(ω) = ⋂ ₙM(ωₙ). If for all n ∈ ℕ there exists m ∈ ℕ such that...
Some boundedness and VMO results are proved for a function f integrable on a cube , starting from an integral bound.
Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of and in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým...