Eberlein compacts in
In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...
In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...
An archimedean vector lattice A might have the following properties: (1) the sigma property (σ): For each there are and a ∈ A with λₙaₙ ≤ a for each n; (2) order convergence and relative uniform convergence are equivalent, denoted (OC ⇒ RUC): if aₙ ↓ 0 then aₙ → 0 r.u. The conjunction of these two is called strongly Egoroff. We consider vector lattices of the form D(X) (all extended real continuous functions on the compact space X) showing that (σ) and (OC ⇒ RUC) are equivalent, and equivalent...
We investigate how the asymptotic eigenvalue behaviour of Hille-Tamarkin operators in Banach function spaces depends on the geometry of the spaces involved. It turns out that the relevant properties are cotype p and p-concavity. We prove some eigenvalue estimates for Hille-Tamarkin operators in general Banach function spaces which extend the classical results in Lebesgue spaces. We specialize our results to Lorentz, Orlicz and Zygmund spaces and give applications to Fourier analysis. We are also...
We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.
Anisotropic Lipschitz spaces are considered. For these spaces we obtain sharp embeddings in Besov and Lorentz spaces. The methods used are based on estimates of iterative rearrangements. We find a unified approach that arises from the estimation of functions defined as minimum of a given system of functions. The case of L¹-norm is also covered.
We prove norm inequalities between Lorentz and Besov-Lipschitz spaces of fractional smoothness.
In this paper, characterizations of the embeddings between weighted Copson function spaces and weighted Cesàro function spaces are given. In particular, two-sided estimates of the optimal constant in the inequality where , and , , , are weights on , are obtained. The most innovative part consists of the fact that possibly different parameters and and possibly different inner weights and are allowed. The proof is based on the combination of duality techniques with estimates...
A simple expression is presented that is equivalent to the norm of the Lpv → Lqu embedding of the cone of quasi-concave functions in the case 0 < q < p < ∞. The result is extended to more general cones and the case q = 1 is used to prove a reduction principle which shows that questions of boundedness of operators on these cones may be reduced to the boundedness of related operators on whole spaces. An equivalent norm for the dual of the Lorentz spaceΓp(v) = { f: ( ∫0∞ (f**)pv...