Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Rademacher functions in BMO

Sergey V. Astashkin, Mikhail Leibov, Lech Maligranda (2011)

Studia Mathematica

The Rademacher sums are investigated in the BMO space on [0,1]. They span an uncomplemented subspace, in contrast to the dyadic B M O d space on [0,1], where they span a complemented subspace isomorphic to l₂. Moreover, structural properties of infinite-dimensional closed subspaces of the span of the Rademacher functions in BMO are studied and an analog of the Kadec-Pełczyński type alternative with l₂ and c₀ spaces is proved.

Rademacher functions in Cesàro type spaces

Sergei V. Astashkin, Lech Maligranda (2010)

Studia Mathematica

The Rademacher sums are investigated in the Cesàro spaces C e s p (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces K p , w on [0,1]. They span l₂ space in C e s p for any 1 ≤ p < ∞ and in K p , w if and only if the weight w is larger than t l o g p / 2 ( 2 / t ) on (0,1). Moreover, the span of the Rademachers is not complemented in C e s p for any 1 ≤ p < ∞ or in K 1 , w for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is a complemented...

Rademacher functions in weighted Cesàro spaces

Javier Carrillo-Alanís (2013)

Studia Mathematica

We study the behaviour of the Rademacher functions in the weighted Cesàro spaces Ces(ω,p), for ω(x) a weight and 1 ≤ p ≤ ∞. In particular, the case when the Rademacher functions generate in Ces(ω,p) a closed linear subspace isomorphic to ℓ² is considered.

Real interpolation for families of Banach spaces

Maria Carro (1994)

Studia Mathematica

We develop a new method of real interpolation for infinite families of Banach spaces that covers the methods of Lions-Peetre, Sparr for N spaces, Fernández for 2 N spaces and the recent method of Cobos-Peetre.

Real interpolation for non-distant Marcinkiewicz spaces.

Evgeniy Pustylnik (2001)

Revista Matemática Complutense

We describe the real interpolation spaces between given Marcinkiewicz spaces that have fundamental functions of the form t1/q (ln (e/t)a with the same exponent q. The spaces thus obtained are used for the proof of optimal interpolation theorem from [7], concerning spaces L∞,a,E.

Real method of interpolation on subcouples of codimension one

S. V. Astashkin, P. Sunehag (2008)

Studia Mathematica

We find necessary and sufficient conditions under which the norms of the interpolation spaces ( N , N ) θ , q and ( X , X ) θ , q are equivalent on N, where N is the kernel of a nonzero functional ψ ∈ (X₀ ∩ X₁)* and N i is the normed space N with the norm inherited from X i (i = 0,1). Our proof is based on reducing the problem to its partial case studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spaces. As an application we completely resolve the problem of when the range of the operator T θ = S - 2 θ I (S denotes the...

Reflexive subspaces of some Orlicz spaces

Emmanuelle Lavergne (2008)

Colloquium Mathematicae

We show that when the conjugate of an Orlicz function ϕ satisfies the growth condition Δ⁰, then the reflexive subspaces of L ϕ are closed in the L¹-norm. For that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that weakly compact subsets of such L ϕ have equi-absolutely continuous norm.

Regularity properties of solutions of elliptic equations in R 2 in limit cases

Angela Alberico, Vincenzo Ferone (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper the Dirichlet problem for a linear elliptic equation in an open, bounded subset of R 2 is studied. Regularity properties of the solutions are proved, when the data are L 1 -functions or Radon measures. In particular sharp assumptions which guarantee the continuity of solutions are given.

Relations between weighted Orlicz and B M O φ spaces through fractional integrals

Eleonor Ofelia Harboure, Oscar Salinas, Beatriz E. Viviani (1999)

Commentationes Mathematicae Universitatis Carolinae

We characterize the class of weights, invariant under dilations, for which a modified fractional integral operator I α maps weak weighted Orlicz - φ spaces into appropriate weighted versions of the spaces B M O ψ , where ψ ( t ) = t α / n φ - 1 ( 1 / t ) . This generalizes known results about boundedness of I α from weak L p into Lipschitz spaces for p > n / α and from weak L n / α into B M O . It turns out that the class of weights corresponding to I α acting on weak - L φ for φ of lower type equal or greater than n / α , is the same as the one solving the problem for weak...

Currently displaying 1 – 20 of 35

Page 1 Next