Parabolic initial-boundary value problems in Orlicz spaces
We prove some time mollification properties and imbedding results in inhomogeneous Orlicz-Sobolev spaces which allow us to solve a second order parabolic equation in Orlicz spaces.
We prove some time mollification properties and imbedding results in inhomogeneous Orlicz-Sobolev spaces which allow us to solve a second order parabolic equation in Orlicz spaces.
It is proved that the Musielak-Orlicz function space LF(mu,X) of Bochner type is P-convex if and only if both spaces LF(mu,R) and X are P-convex. In particular, the Lebesgue-Bochner space Lp(mu,X) is P-convex iff X is P-convex.
We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized and unified...
We introduce generalized Campanato spaces on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then . We give a characterization of the set of all pointwise multipliers on .
Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for , we denote by the set of all functions such that , where B(a,r) is the ball centered at a and of...
Let w be a non-negative measurable function defined on the positive semi-axis and satisfying the reverse Hölder inequality with exponents 0 < α < β. In the present paper, sharp estimates of the compositions of the power means , x > 0, are obtained for various exponents α. As a result, for the function w a property of self-improvement of summability exponents is established.
In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise...