Displaying 241 – 260 of 425

Showing per page

Absolutely continuous linear operators on Köthe-Bochner spaces

(2011)

Banach Center Publications

Let E be a Banach function space over a finite and atomless measure space (Ω,Σ,μ) and let ( X , | | · | | X ) and ( Y , | | · | | Y ) be real Banach spaces. A linear operator T acting from the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if | | T ( 1 A f ) | | Y 0 whenever μ(Aₙ) → 0, (Aₙ) ⊂ Σ. In this paper we examine absolutely continuous operators from E(X) to Y. Moreover, we establish relationships between different classes of linear operators from E(X) to Y.

Abstract Korovkin-type theorems in modular spaces and applications

Carlo Bardaro, Antonio Boccuto, Xenofon Dimitriou, Ilaria Mantellini (2013)

Open Mathematics

We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results with respect to an axiomatic convergence, including almost convergence. An extension to non positive operators is also studied. Finally, we give some examples and applications to moment and bivariate Kantorovich-type operators, showing that our results are proper extensions of the...

Adaptive Deterministic Dyadic Grids on Spaces of Homogeneous Type

Richard Lechner, Markus Passenbrunner (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

In the context of spaces of homogeneous type, we develop a method to deterministically construct dyadic grids, specifically adapted to a given combinatorial situation. This method is used to estimate vector-valued operators rearranging martingale difference sequences such as the Haar system.

Addendum to "Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces" (Colloq. Math. 127 (2012), 105-109)

Aydin Sh. Shukurov (2014)

Colloquium Mathematicae

It is well known that if φ(t) ≡ t, then the system φ ( t ) n = 0 is not a Schauder basis in L₂[0,1]. It is natural to ask whether there is a function φ for which the power system φ ( t ) n = 0 is a basis in some Lebesgue space L p . The aim of this short note is to show that the answer to this question is negative.

Adhérence faible étoile d'algèbres de fractions rationnelles

Jacques Chaumat (1974)

Annales de l'institut Fourier

Étant donnés un compact K du plan complexe, et une mesure non nulle sur K , on étudie H ( μ ) , l’adhérence dans L ( μ ) , pour la topologie σ ( L ( μ ) , L 1 ( μ ) ) , de l’algèbre des fractions rationnelles d’une variable complexe, à pôles hors de K . Le résultat principal obtenu est qu’il existe un sous-ensemble E μ de K , éventuellement vide, mesurable pour la mesure de Lebesgue plane, et une mesure μ s , éventuellement nulle, absolument continue par rapport à la mesure μ , tels que : H ( μ ) soit isométriquement isomorphe à H ( λ E μ ) L ( μ s ) , où λ E μ désigne la...

Currently displaying 241 – 260 of 425