Displaying 341 – 360 of 425

Showing per page

Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nulle.

Pierre Gilles Lemarie-Rieusset (1992)

Revista Matemática Iberoamericana

The notion of non-orthogonal multi-resolution analysis and its compatibility with differentiation (as expressed by the commutation formula) lead us to the construction of a multi-resolution analysis of L2(Rn)n which is well adapted to the approximation of divergence-free vector functions. Thus, we obtain unconditional bases of compactly supported divergence-free vector wavelets.

Analytic rings

Eduardo Dubuc, Gabriel Taubin (1983)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Anisotropic Besov spaces and approximation numbers of traces on related fractal sets.

Erika Tamási (2006)

Revista Matemática Complutense

This paper deals with approximation numbers of the compact trace operator of an anisotropic Besov space into some Lp-space,trΓ: Bpps,a (Rn) → Lp(Γ), s > 0, 1 < p < ∞,where Γ is an anisotropic d-set, 0 < d < n. We also prove homogeneity estimates, a homogeneous equivalent norm and the localization property in Bpps,a.

Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms

Viviane Baladi, Masato Tsujii (2007)

Annales de l’institut Fourier

We study spectral properties of transfer operators for diffeomorphisms T : X X on a Riemannian manifold X . Suppose that Ω is an isolated hyperbolic subset for T , with a compact isolating neighborhood V X . We first introduce Banach spaces of distributions supported on V , which are anisotropic versions of the usual space of C p functions C p ( V ) and of the generalized Sobolev spaces W p , t ( V ) , respectively. We then show that the transfer operators associated to  T and a smooth weight g extend boundedly to these spaces, and...

Currently displaying 341 – 360 of 425