Approximation Results in the Strict Topology
Relations between homomorphisms on a real function algebra and different properties (such as being inverse-closed and closed under bounded inversion) are studied.
E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach space...
When treating spaces of holomorphic functions with growth conditions, one is led to introduce associated weights. In our main theorem we characterize, in terms of the sequence of associated weights, several properties of weighted (LB)-spaces of holomorphic functions on an open subset which play an important role in the projective description problem. A number of relevant examples are provided, and a “new projective description problem” is posed. The proof of our main result can also serve to characterize...
J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if is a smooth bounded domain, 1 ≤ p < ∞ and , then , where K is a constant depending only on p and d. The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space . The purpose of this paper is to obtain analogous asymptotic formulae for some...
A new criterion of asymptotic periodicity of Markov operators on , established in [3], is extended to the class of Markov operators on signed measures.
Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.
As a natural extension of Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.